

1-Line Bi-directional low Capacitance TVS Diode

Description

The SSCE5V0C2N1 is a bi-directional TVS diode, utilizing leading monolithic silicon technology to provide fast response time and low ESD clamping voltage, making this device an ideal solution for protecting voltage sensitive high-speed data lines. The SSCE5V0C2N1 has an ultra-low capacitance with a typical value at 0.15 pF, and complies with the IEC 61000-4-2 (ESD) with ±20kV air and ±15kV contact discharge. It is assembled into an ultra-small 1.0x0.6x0.5mm lead-free DFN package.

Also because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed, USB 3.0 and USB 4.0 super speed, VGA, DVI, HDMI, SDI and other high speed line applications.

Features

- \Rightarrow 40W peak pulse power (t_P = 8/20µs)
- ♦ DFN1006-2L Package
- ♦ Working voltage:5V
- ♦ Low Leakage Current
- ♦ Low capacitance
- ♦ Low clamping voltage
- ♦ Response Time is Typically<1ns</p>
- Complies with following standards:
 - IEC 61000-4-2 (ESD) immunity test

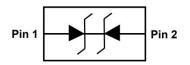
Air discharge: ±20kV

Contact discharge: ±15kV

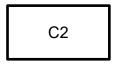
-IEC61000-4-5(Lightning)2.5A(8/20µs)

Mechanical Characteristics

♦ Package: DFN1006-2L (1.0×0.6×0.5mm)


♦ Lead finish: 100% matte Sn (Tin)

- ♦ Device meets MSL 3 requirements
- ♦ Case Material: "Green" Molding Compound.


PIN configuration

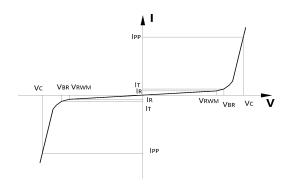
DFN1006-2L (Bottom View)

Circuit Diagram

Marking (Top View)

Applications

- ♦ DVI & HDMI Port Protection
- ♦ USB 2.0, USB 3.0 and USB 4.0
- ♦ SATA and eSATA
- ♦ Serial and Parallel Ports
- ♦ Projection TV
- ♦ Notebooks, Desktops, Servers
- ♦ Digital cameras

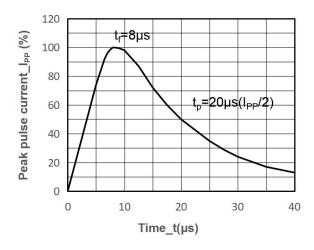

 \diamondsuit

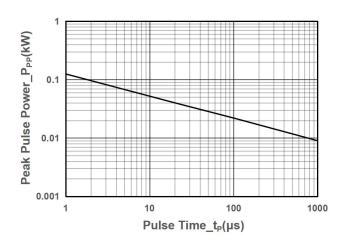
♦ RoHS Compliant

• Electronic Parameter

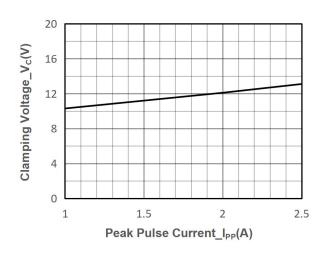
Symbol	Parameter		
V _{RWM}	Peak Reverse Working Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V_{BR}	Breakdown Voltage @ I⊤		
I _T	Test Current		
I _{PP}	Maximum Reverse Peak Pulse Current		
Vc	Clamping Voltage @ IPP		
P _{PP}	Peak Pulse Power		
Сл	Junction Capacitance		

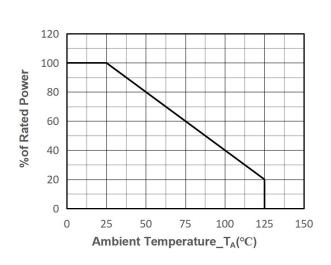
• Absolute maximum rating ($T_A=25^{\circ}$ C unless otherwise noted)


Parameter		Symbol	Value	Units	
Peak Pulse Power(8/20µs)		P _{PP}	40	W	
Peak Pulse Current (8/20µs)		I _{PP}	2.5	А	
ESD Rating per IEC61000-4-2:	Contact		±15	147	
	Air	V _{ESD}	±20	kV	
Storage Temperature		T _{STG}	-55/+150	$^{\circ}$	
Operating Temperature		TJ	-55/+125	$^{\circ}$	

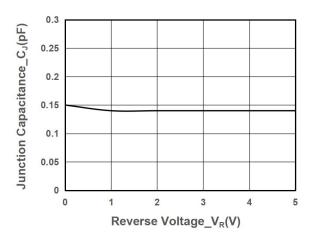

• Electrical Characteristics (T_A=25℃ unless otherwise noted)

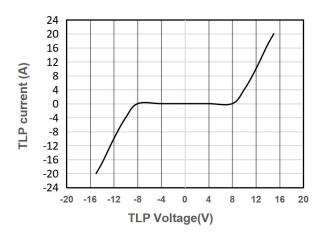
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Peak Reverse Working Voltage	V_{RWM}				5	V
Breakdown Voltage	V _{BR}	I _T = 1mA	6		9	V
Reverse Leakage Current	I _R	V _{RWM} = 5V			0.1	μA
Clamping Voltage	Vc	$I_{PP} = 1A, t_P = 8/20 \mu s$		10	12	V
Clamping Voltage	Vc	$I_{PP} = 2.5A, t_P = 8/20 \mu s$		13	20	V
Dynamic resistance	R _{DYN}			0.26		Ω
Junction Capacitance	CJ	V _R = 0V, f = 1MHz		0.15	0.3	pF


Typical Performance Characteristics (T_A=25^o unless otherwise noted)



8/20µs Pulse Waveform

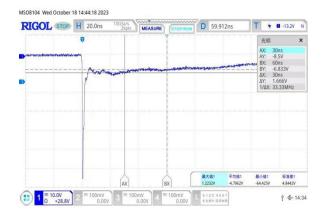

Peak Pulse Power vs. Pulse Time

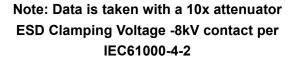


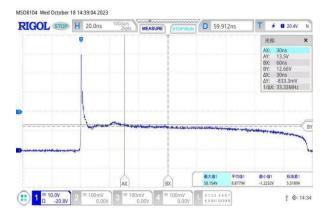
Clamping Voltage vs. Peak Pulse Current

Power derating vs. Ambient temperature

Junction Capacitance vs. Reverse Voltage


TLP Measurement


3/6

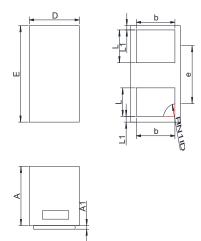


4/6

• Typical Performance Characteristics (TA=25°C unless otherwise noted)

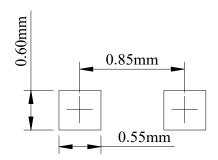
Note: Data is taken with a 10x attenuator ESD Clamping Voltage 8kV contact per IEC61000-4-2

• Package Information


Ordering Information

Device	Package	Qty per Reel	Reel Size
SSCE5V0C2N1	DFN1006-2L	10000	7 Inch

Mechanical Data


Case: DFN1006-2L

Case Material: Molded Plastic. UL Flammability

DIM	Millimeters			
	Min	Max		
Α	0.45	0.55		
A 1	0.00	0.05		
D	0.55	0.65		
E	0.95	1.05		
b	0.45 0.60			
е	0.65TYP			
L	0.2	0.3		
L1	0.05REF			

Suggested Land Pattern

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.